Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission
نویسندگان
چکیده
The global characteristics of retrievals of the column-averaged CO2 dry air mole fraction, XCO2, from shortwave infrared observations has been studied using the expected measurement performance of the NASA Orbiting Carbon Observatory-2 (OCO-2) mission. This study focuses on XCO2 retrieval precision and averaging kernels and their sensitivity to key parameters such as solar zenith angle (SZA), surface pressure, surface type and aerosol optical depth (AOD), for both nadir and sunglint observing modes. Realistic simulations have been carried out and the single sounding retrieval errors for XCO2 have been derived from the formal retrieval error covariance matrix under the assumption that the retrieval has converged to the correct answer and that the forward model can adequately describe the measurement. Thus, the retrieval errors presented in this study represent an estimate of the retrieval precision. For nadir observations, we find single-sounding retrieval errors with values typically less than 1 part per million (ppm) over most land surfaces for SZAs less than 70° and up to 2.5 ppm for larger SZAs. Larger errors are found over snow/ice and ocean surfaces due to their low albedo in the spectral regions of the CO2 absorption bands and, for ocean, also in the O2 A band. For sunglint observations, errors over the ocean are significantly smaller than in nadir mode with values in the range of 0.3 to 0.6 ppm for OPEN ACCESS Remote Sens. 2011, 3 271 small SZAs which can decrease to values as small as 0.15 for the largest SZAs. The vertical sensitivity of the retrieval that is represented by the column averaging kernel peaks near the surface and exhibits values near unity throughout most of the troposphere for most anticipated scenes. Nadir observations over dark ocean or snow/ice surfaces and observations with large AOD and large SZA show a decreased sensitivity to near-surface CO2. All simulations are carried out for a mid-latitude summer atmospheric profile, a given aerosol type and vertical distribution, a constant windspeed for ocean sunglint and by excluding the presence of thin cirrus clouds. The impact of these parameters on averaging kernels and XCO2 retrieval errors are studied with sensitivity studies. Systematic biases in retrieved XCO2, as can be introduced by uncertainties in the spectroscopic parameters, instrument calibration or deficiencies in the retrieval algorithm itself, are not included in this study. The presented error estimates will therefore only describe the true retrieval errors once systematic biases are eliminated. It is expected that it will be possible to retrieve XCO2 for cloud free observations and for low AOD (here less than 0.3 for the wavelength region of the O2 A band) with sufficient accuracy for improving CO2 surface flux estimates and we find that on average 18% to 21% of all observations are sufficiently cloud-free with only few areas suffering from the presence of persistent clouds or high AOD. This results typically in tens of useful observations per 16 day ground track repeat cycle at a 1° × 1° resolution. Averaging observations acquired along ~1° intervals for individual ground tracks will significantly reduce the random component of the errors of the XCO2 average product for ingestion into data assimilation/inverse models. If biases in the XCO2 retrieval of the order of a few tenth ppm can be successfully removed by validation or by bias-correction in the flux inversion, then it can be expected that OCO-2 XCO2 data can lead to tremendous improvements in estimates of CO2 surface-atmosphere fluxes.
منابع مشابه
The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization
Here, we report preliminary estimates of the column averaged carbon dioxide (CO2) dry air mole fraction, XCO2 , retrieved from spectra recorded over land by the Greenhouse gases Observing Satellite, GOSAT (nicknamed “Ibuki”), using retrieval methods originally developed for the NASA Orbiting Carbon Observatory (OCO) mission. After screening for clouds and other known error sources, these retrie...
متن کاملAtmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission
We describe atmospheric validation of 1:61 mm and 2:06 mm CO2 absorption coefficient databases for use by the Orbiting Carbon Observatory (OCO-2). The OCO-2 mission will collect the measurements needed to estimate column-averaged CO2 dry air mole fraction within 1 ppm accuracy without the regionor airmass-dependent biases that would significantly degrade efforts to understand carbon sources and...
متن کاملAssessing temporal clear-sky errors in assimilation of satellite CO2 retrievals using a global transport model
The Orbiting Carbon Observatory (OCO) and the Greenhouse gases Observing SATellite (GOSAT) will make global observations of the total column dry-air mole fraction of atmospheric CO2 (XCO2 ) starting in 2008. Although satellites have global coverage, XCO2 retrievals will be made only a few times each month over a given location and will only be sampled in clear conditions. Modelers will use XCO2...
متن کاملOn Statistical Approaches to Generate Level 3 Products from Satellite Remote Sensing Retrievals
Satellite remote sensing of trace gases such as carbon dioxide (CO2) has increased our ability to observe and understand Earth’s climate. However, these remote sensing data, specifically Level 2 retrievals, tend to be irregular in space and time, and hence, spatio-temporal prediction is required to infer values at any location and time point. Such inferences are not only required to answer impo...
متن کاملThe potential of clear-sky carbon dioxide satellite retrievals
Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2 ) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 3 شماره
صفحات -
تاریخ انتشار 2011